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1. Introduction

Fault detection via parameter estimation relies in the principle that possible faults in the
monitored system can be associated with specific parameters and states of the mathematical
model of the system given in the form of  an input-output relation:

y(t)=f(u,e,θ,x)

where y(t) represents the output vector of the system, u(t) the input vector, x(t) the state
variables which are partially measurable, θ the non measurable parameters which are likely
to change on the occurrence of a fault, and e(t) the modeling errors and/or noise terms
affecting the process.

The general procedure to detect faults follows the steps below:

(1) Establishment of the mathematical model of the system’s normal behavior,

y(t)=f(u(t),θ)

At this stage, allowable tolerances for the system’s parameter values are also defined.

(2) Determination of the relationship between the model parameters θi and the physical
system parameters pj.

(3) Estimation of the model parameters θi from measurements of y(t), u(t) by a suitable
estimation procedure,

(4) Calculation of the physical system parameters, via the inverse relationship:
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(5) Decision on whether a fault has occurred, based either on the changes ∆pj or on the
changes ∆θi and tolerances limits. If the decision is made based on the ∆θi the affected
pi’s can be easily determined from step 2. This may be achieved with the aid of a fault
catalogue in which the relationship between process faults and changes in the
coefficients ∆pj has been established. Decision can be made either by simply checking
against the predetermined threshold levels, or by using more sophisticated methods
from the field of statistical decision theory.

The basis of this class of methods is the combination of theoretical modeling and
parameter estimation of continuous time models. The procedure is illustrated in figure 1.

Figure 1.Fault detection based on parameter estimation an theoretical modeling

In this paper, the focus is put on the study of classical parameter estimation methods. The
methods explained are then applied to the 3-tanks benckmark [Lunze, COSY Benchmark
Problem].
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2. Parameter estimation for fault detection

In this section, two approaches for solving a Recursive Least Squares (RLS) algorithm are
presented. To apply this method, other important issues like implementation and
robustness, not explained here, must be taken into account. Much more information about
these techniques can be obtained in [Pouliezos & Stavrakakis 1994].

2.1. Recursive Least Squares algorithms

Given the system represented by the following input-output model:

where ana and bnb are the order model structure and nk is the delay.

The Recursive Least Squares algorithm consist of:

where:

ε(t) is the innovation error, P(t) is the covariance matrix and k(t) is the innovation gain.

The algorithm needs initial values: θ(0) and P(0). These can be either provided from
knowledge of the system characteristics or calculated from an initial data set using the non
recursive least square method.

The result minimises the following expression:

where N is the number of samples.

Under the following mild conditions, the LS estimate is consistent, i.e. tends to θ as N
tends to infinity:

E{ϕ(t) ϕT(t)} is non  singular
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E{ϕ(t) ε(t)} = 0

The first condition guarantees the excitation level of the output signals and the second
guarantees the statistical independence of the output signals and the error.

Tfrom the practical point of view, the convergence speed is generally slow which makes
the standard RLS estimation method inadequate for real-time fault detection application.
There are several approaches for modifying the RLS algorithm to make it suitable as a
real-time fault detection method:

• Use of a forgetting factor
• Use of a virtual Kalman filter
• Use of sliding window data

2.2. Forgetting factor

In this case, the approach is to change the loss function to be minimized. Let the modified
loss function be:

This means that the measures that are older than T0=1/(1-λ) samples are included in the
criterion with a weight approximately equal to 36% of that of the most recent
measurement. The T0 means the memory time constant of the criterion and reflects the
ratio between the time constant of variations in the dynamics and those of the dynamics
itself. Typical choice of λ are in the range between 0.98 to 0.995 [Ljung 1986]. The RLS
method with forgetting factor is:

Experiences for different values of λ show that a decrease in the value of the forgetting
factor has two effects:

(1) The parameter estimates converge to their true value quicker, thus decreasing the fault
alarm delay time.
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(2) But at the expense of increased sensitivity to noise. If λ is much less than 1 the
estimates may even oscillates around their true value.

To solve this problem, there are different approaches [Pouliezos & Stavrakakis, 1994].
Only two of them are presented here: the time-variant forgetting factor and Kalman filters.

• Time-varying forgetting factor
One algorithm to implement a variable forgetting factor is the proposed by [Fortescue et al.
1981]. The recursion consists in:

In this algorithm, the value of the constant σ0 is the expected measurement noise variance
which must be chosen based on the knowledge of the system. The minimum value for λ(t)
is also to be chosen by the user.

The intuitive idea behind the time-varying forgetting factor is that the forgetting factor is
decreased towards its minimal allowed value as the error increases. In consequence, the
data corresponding to a big error is “forgotten” faster.

• Kalman filters

The model can be described as a state space equation:

where the ‘state vector’ x(t) is given by:

To model the time-varying ‘states’, the state equation can be described as:

This means that the parameter vector is modeled as a non-correlated random drift (which
assumes slow variation). The covariance matrix R1 can be used to describe how fast the
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different components of θ are expected to vary. The recursive algorithm obtained as a
result to apply the Kalman filter to the model is:

In this algorithm R1 has a similar role as the forgetting factor λ. These design variables
should be chosen by trade-off between fast detection (which requires λ “small” or R1

“large”) and reliability (which requires λ close to 1 or R1 “small”).

3 Benchmark process fault detection

The studied system is presented in figure 2 [Lunze, COSY Benchmark Problem].

Figure 2. Process configuration and notations

This system can be modeled using the following linear equations:

where:

The working point has been chosen as proposed in the benchmark.
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The methods used for fault detection have been:

• A RLS with a constant forgetting factor of 0.995, showed in the figures in blue color;
• A RLS algorithm with variable forgetting factor, showed in the figures in green color;
• A Kalman filter modified RLS algorithm, showed in the figures in red color;

These methods have been applied to detect faults in the scenarios I, II and III proposed in
the benchmark [Lunze, COSY Benchmark Problem].

4.1. Scenario I

 Scenario I corresponds to valve V1 blocked closed from time 1000. The figure 3 shows the
estimate values of the parameters.

Figure 3. Estimated parameter values using scenario I
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When the fault is occurs, the recursive estimation algorithm converges towards the new
values. The rate of convergence depends on the weighting factor. In this example the
Kalman filter has a rate of convergence significantly slower than the two other ones.

Note that in this scenario, the fault (valve V1 is blocked and closed) changes the model
structure. As we maintain the same model structure after the fault, the estimated values of
the parameters have no relation with the reality. Even though the change of estimated
values is an indication of the fault.

4.2. Scenario II

Scenario II corresponds to valve V1 blocked opened. Figure 4 shows the estimated values
of the parameters.

Figure 4. Estimated parameter values using scenario II
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As for scenario I, when the fault occurs, the recursive estimation algorithm converges
towards the new values. In this example the Kalman filter has also a rate of convergence
much slower than the two other ones. It is possible to increase the R1 value but in this case
the response variance increases.

The major difference with scenario I is that in this case the new value of a2 is unstable.
Actually, both scenarios have convergence problems due to the non excitation of
input/output signals.

4.3. Scenario III

Scenario III corresponds to a leak in tank 1, the fault occurs at time 800 seconds. Figure 5
shows the estimated values of the parameters.

Figure 6. Estimate parameter values using the scenario III
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When the fault occurs at time 800, the estimation responds slowly and converging to the
new values takes nearly 15 minutes. The rate of convergence of the estimation could be
increased by decreasing the weighting factor (or equivalent), but the variance of the
estimation response would be larger.

In the new steady state the values of the parameters a1, b11 and b12, which correspond to the
first tank, have different values than their initial values whereas the parameters
corresponding to the second tank converge back to their initial values. This localizes the
fault on the first tank.

5. Conclusions
This paper presents three classical RLS based parameter estimation methods that have been
applied to the 3 tanks benchmark.

It should be mentioned that the 3 tanks benchmark is not ideal to test identification methods
because two out of three of the proposed faults change the model structure. This is indeed a
difficult problem, even with other approaches (observer-based or parity space approaches).

An advantage of these methods is to approach simultaneously the fault detection and fault
isolation problems. This is of course conditioned by the knowledge of the inverse relation
allowing one to go from model parameters to physical parameters.

A problem that must be reported about estimation methods is their high sensitivity to the
parametrization, i.e. in our case, the values of l and R1, which may completely change the
algorithm behavior, turning unstable for instance. Note that other methods exist as a
solution to the problem of the covariance matrix being unstable or singular (result of pour
excitation signals) [Pot et al. 1984].

Our experiments show that the convergence rate of the algorithms is a critical issue. It
should be outlined that our experiments are aimed at illustrating the estimation algorithms
behavior but they do not really address the detection problem. Indeed, the problem of
detecting changes in a signal (the estimated ones) is a problem by itself. It is often solved
by simply checking against predetermined thresholds [qmini, qmaxi] but there is a large
literature on more sophisticated decision procedures to detect changes/faults in signals
[Hägglund 1984][Basseville & Nikiforov 1993]. Also the fault detection robustness issue is
addressed, for instance by [Wahlberg 1990][Kwon and Goodwin 1990].
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